
~ )  Pergamon 

0017-9310(94)00195-2 

Int. Z Heat Mass Transfer. Vol. 38, No. 5, pp. 909-919, 1995 
Copyright © 1995 Elsevier Science Ltd 

Printed in Great Britain. All rights reserved 
0017-9310/95 $9.50+0.00 

Vapor bubble growth in heterogeneous 
boiling I. Formulation 

RENWEI MEI 
Department of Aerospace Engineering, Mechanics & Engineering Science, University of Florida, 

Gainesville, FL 32611, U.S.A. 

and 

WENCHIN CHEN and JAMES F. KLAUSNER 
Department of Mechanical Engineering, University of Florida, Gainesville, FL 32611, U.S.A. 

(Received 13 December 1993 and in f inal form 17 June 1994) 

Abstraet--A numerical analysis is carried out to study bubble growth in saturated heterogeneous boiling. 
The bubble growth is determined by considering the simultaneous energy transfer among the vapor bubble, 
liquid microlayer, and heater. Finite difference solutions for the temperature fields in the microlayer and 
heater are obtained on expanding coordinates as the bubble grows. The parameters characterizing the 
bubble shape and microlayer wedge angle are determined by matching the existing experimental data. The 
predicted bubble growth rate compares very well with the reported experimental data over a wide range of 

conditions. 

1. INTRODUCTION 

1.1. B a c k g r o u n d  
Over the past four decades, the rate of vapor bubble 
growth in heterogeneous boiling systems has been the 
subject of numerous experimental and theoretical 
investigations due to its governing influence on heat 
transfer. A number of  theoretical investigations on 
bubble growth rate have been conducted for uni- 
formly superheated liquids [1-4] and nonuniformly 
superheated liquids [5-10]; various closed-form 
expressions for the growth rate have been proposed. 
Extensive experimental data exist which demonstrate 
that such expressions do not accurately predict the 
vapor bubble growth rate in heterogeneous boiling. 
In particular, the inadequacy of such expressions have 
been clearly shown in Cole and Shulman [11] and Van 
Stralen et  al. [12] for high Jacob number, Staniszewski 
[13] and Akiyama et  al. [14] for low Jacob number, 
and Keshock and Siegel [15] for low gravity. 

Labunstov [16] recognized that the majority of heat 
transfer to a growiLng vapor bubble occurs in a liquid 
microlayer which resides beneath its base ; he derived 
a vapor bubble growth expression by assuming a con- 
stant wall temperature. Cooper [17] also developed 
a microlayer bubble growth model by assuming a 
constant wall temperature. Dzakowic and Frost  [18] 
calculated the vapor bubble growth rate using a con- 
stant wall temperature evaporating microlayer model 
in which the transient microlayer thermal field is 
accounted for. Srinivas and Kumar [19] proposed a 
microlayer bubble growth model which accounts for 
the bubble shape as well as natural convection and 

assumes a constant wall temperature. However, these 
models do not agree well with available experimental 
data [11-15]. Cooper and Vijuk [20] and Van Stralen 
et  al. [21] have considered the heat transfer to a grow- 
ing vapor bubble from both the microlayer and the 
liquid surrounding the vapor dome. Asymptotic 
expressions for the vapor bubble growth rate were 
derived by combining Rayleigh's solution for the 
initial stage of growth with the heat transfer controlled 
solution. The growth model of Van Stralen et  al. [21] 
appears to agree better with the high Jacob number 
data than that of Cooper and Vijuk [20]. However, its 
usefulness is limited due to the required specification 
of a dimensionless bubble growth parameter for which 
little guidance was provided on how it should be cal- 
culated. Fyodorov and Klimenko [22] recently pro- 
posed a microlayer bubble growth rate model in which 
spatial variations in the wall temperature were 
included, but the temporal variations were ignored. 
Their growth rate model predicts that the bubble 
radius is proportional to the square root of  time, t '/2. 
However, the data of Akiyama et  al. [14] clearly dem- 
onstrate that the exponent on t can be as small as 1/5 
at very low Jacob number. 

In their model for predicting the growth and detach- 
ment of a vapor bubble attached to a heating surface, 
Lee and Nydahl [23] incorporated the effect of hydro- 
dynamics surrounding the dome of the growing 
bubble. They assumed a constant wall temperature, 
modelled the bubble as consisting of a wedge-shaped 
microlayer and a hemisphere, and carried out detailed 
numerical computations for the momentum and 
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NOMENCLATURE 

A area of microlayer wedge 
c bubble shape parameter [Rb(t)/R(t)] ; 

empirically determined 
c~ microlayer wedge angle parameter ; 

empirically determined 
cp~ liquid specific heat 
f (c )  bubble volume factor ; given by 

equation (3) 
Fo Fourier number 
hfg latent heat of vaporization 
H solid heater thickness 
k~ and ks liquid and solid thermal 

conductivity 
Ja Jacob number 
L(r) local microlayer thickness 
Pr~ liquid Prandtl number 
q" and q" heat supply from the bottom of 

the heater and within the heater 
r radial coordinate 

dimensionless radial coordinate scaled 
by microlayer radius, r/Rb(t) 

R(t) actual bubble radius 
R(t) actual bubble growth rate 
Rb(t) radius of the liquid microlayer 

underneath the bubble 
Re(t) bubble radius assuming a constant 

wall temperature 
/~ dimensionless bubble growth rate 
Sr and Sz constants used in the grid 

stretching 
t time 
td vapor bubble departure time scale 

to initial time for the computation 
T~ and T~ liquid and solid temperature 
Tsar saturated temperature 
z coordinate in the direction normal to 

the heating surface 
g~ and gs dimensionless coordinates in the 

liquid microlayer and solid heater. 

Greek symbols 
ct liquid-to-solid thermal diffusivity 

ratio, ~ll~ 
ct~ and cts liquid and solid thermal diffusivity 
fl a constant for bubble radius at 

constant wall temperature 
6,h thermal layer thickness of the bulk 

liquid 
AT~t0 initial superheat at incipience 
~b microlayer wedge angle [rad] 
~/and ( computational coordinates 
x liquid-to-solid thermal conductivity 

ratio, kl/ks 
v~ liquid kinematic viscosity 
p~ and Pv liquid and vapor density 
0~ and 0~ dimensionless temperature of 

liquid and solid 
a transformed time coordinate, z ~/2 
Aa "time step" in the transformed time 

coordinate 
r dimensionless time, t/td 
z0 initial time (dimensionless) at the 

beginning of the computation. 

energy equations for the liquid phase surrounding 
the vapor bubble. However, their predictions for the 
bubble growth rate and the detachment radius are 
not satisfactory when compared against experimental 
data. 

Despite the importance of predicting the bubble 
growth rate in heterogeneous boiling and continuous 
research efforts covering the subject, no satisfactory 
theory has been formulated to cover a wide range of 
conditions. In the recent works for predicting the 
vapor bubble detachment diameter for pool boiling 
[24] and that for flow boiling [25], a successful model 
was developed based on first principles of mechanics. 
The predictions for the detachment radius agree quite 
well with the data over a wide range of conditions; 
however, the agreement was obtained only after using 
the actual bubble growth rate reported for each exper- 
iment. Clearly, without a reliable, physically sound 
bubble growth rate model the utility of the bubble 
detachment models [24, 25] is limited. 

1.2. Physical features of  the bubble growth process con- 
sidered in the present analysis 

In the previous works for predicting the growth 
rate of a bubble attached to a heating surface, the 
simultaneous spatial and temporal changes of the 
heating surface temperature were not considered. 
However, the temperature distribution in the neigh- 
borhood of a heater wall has long been believed by 
Westwater [26] to be important to the mechanics of 
bubble growth. In reality, the growth of a bubble 
requires a certain amount of energy from the heating 
surface to vaporize the surrounding liquid. In satu- 
rated boiling, this energy must come from the 
microlayer which resides beneath the base of the bub- 
ble and in turn withdraws energy from the solid heater 
[27]. Typically, the growth and departure of a vapor 
bubble involve a very short period [28]. Although 
energy is continuously supplied to the solid, the time 
scale required for the solid to adjust its temperature 
into a uniform distribution for most boiling systems 
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is much longer than the bubble departure time. Conse- 
quently, the local solid temperature directly beneath 
the microlayer will decrease, both in space and in time, 
because the local rate of energy removal due to the 
bubble growth is typically much larger than that 
added. The rapid decrease of the heating surface tem- 
perature directly beneath a growing vapor bubble has 
been experimentally demonstrated by Moore and 
Mesler [27] and Hospeti and Mesler [28]. As the local 
solid wall tempera~Lure decreases with time during the 
bubble growth period, the temperature gradient 
across the microlayer is reduced and in turn directly 
reduces the rate o1' energy transferred to the bubble. 
Therefore, the actual bubble growth rate should be 
smaller than that predicted by assuming a constant 
wall temperature. This prognosis is in qualitative 
agreement with the existing data which show that the 
growth rate R(t) is less than or equal to fit ~/2 in which 
fl is a constant. 

In this paper, tlhe bubble growth process is con- 
sidered to be controUed by the simultaneous unsteady 
energy transfer process among three phases : the vapor 
bubble, the liquid raicrolayer and the solid heater. The 
bubble is assumed to have a uniform temperature at 
saturated conditions, T~t0; the liquid microlayer is 
assumed to be very thin; and the temperature field in 
the solid is assumed to be axisymmetric with respect 
to (wrt) the axis normal to the heating surface and 
drawn through the center of the bubble. In Section 2.1, 
pertinent assumptions are made and the equations, 
the boundary conditions and the initial conditions 
governing the unsteady energy transfer from the solid 
layer through the microlayer to the bubble are 
presented. In Section 2.2, non-dimensionalization and 
coordinate transformations are presented which lead 
to necessary simp]!ifications of the governing equa- 
tions. The solution procedure for the microlayer and 
solid temperature fields and the bubble radius is also 
described. The parameters characterizing the bubble 
shape and the microlayer wedge angle during the 
growth are determined by matching the predicted 
growth rate with the existing experimental data. The 
predicted bubble growth rate is compared with the 
available experimental data over a wide range of con- 
ditions in Section 3.2; very good agreement is 
obtained. Notably, it is found that the Prandtl number 
has little or no effi:ct on the bubble growth rate for 
the experimental conditions considered. To assist the 
basic understanding of  bubble growth in het- 
erogeneous boiling, the results of a systematic study 
considering the der,endence of the bubble growth rate 
and the thermal fields of the liquid microlayer and 
the solid heater on the dimensionless parameters are 
reported in Part II of this study [29]. 

2. FORMULATION 

2.1. Assumptions, ~loverning equations, and boundary 
and initial conditions 

2.1.1. On the vapor bubble. A rigorous description of  
the vapor bubble gxowth and heat transfer processes 

liquid 

L(O ~---~.~ 
Solid wall; best 

wiadn or below 

z 

.) 

r 

t tmtl~ntme eontot~ z~-H 

Fig. 1. Sketch for the growing bubble, microlayer and the 
heating solid. 

among three phases requires a complete account for 
the hydrodynamics around the rapidly growing bub- 
ble in addition to the complex thermal energy transfer. 
The most difficult part, perhaps, is the exact deter- 
mination of the bubble shape which is a moving inter- 
face between the vapor and liquid. The numerical 
analysis by Lee and Nydahl [23] still relied on an 
assumed shape for the bubble, although the hydro- 
dynamics based on the assumed bubble shape is prop- 
erly accounted for. The discussion in the Introduction 
suggests that the thermal coupling between the liquid 
microlayer and the solid heater is perhaps more impor- 
tant than hydrodynamics. Therefore, in order to sim- 
plify the problem, the hydrodynamics of the liquid 
motion induced by the growing bubble is not pursued 
in this analysis. The determination of the bubble shape 
thus relies on empirical evidence. Furthermore, it is 
assumed that energy transfer to the bubble occurs 
only through the microlayer, and energy transfer to 
the bubble dome is small. Thus, the current analysis 
is only applicable to saturated boiling. 

In this study, the liquid microlayer between the 
vapor bubble and the solid heating surface is assumed 
to have a simple wedge shape with an angle ff << 1. In 
this paper, ¢ is measured in radians. The inter- 
ferometry measurements of Koffman and Plesset [30] 
demonstrate that a wedge shaped microlayer is a good 
assumption. There exists ample experimental evidence 
[12, 14, 27] suggesting that, as the bubble grows, the 
dome has approximately a spherical shape with a 
radius R(t), as shown in Fig. 1. Using cylindrical coor- 
dinates, the local microlayer thickness is denoted by 
L(r). The radius of  the wedge-shaped interface is 
denoted by Rb(t) which is typically not equal to R(t). 
Let 

c = Rb(t)/R(t) (1) 

and the vapor bubble volume Vb(t) can be expressed 
approximately as 

Vb(t) = ~ R 3 (Of(c) (2) 

with 
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f(c) ~ 1 -- ¼[1-4(1 - c : ) ]  ~ + ¼[1-4(1 - c : ) ]  3 

fortk << 1. (3) 

In the limit c ~ 1, the bubble is a hemisphere and 
Vb(t)-~ (2n/3)R3(t). In the limit e ~  0, the bubble 
approaches a sphere and Vb(t)~(4~/3)R3(t). The 
dependence of e on other parameters will be deter- 
mined from the reported measurements of the bubble 
shape under various conditions. In this study, c is 
assumed to be independent of time for simplicity. 

An energy balance at the liquid-vapor interface for 
the growing bubble depicted in Fig. 1 is described as 

(or,) dA 
p~hj (c)4~R -~? = - k \ a~ L -  ~(,) 

for ~b << 1 (4) 

where Pv is the vapor density, hfg the latent heat, kl the 
liquid thermal conductivity, T~ the liquid temperature 
and A the area of the wedge. With axisymmetry and 
q~ << 1, dA = 2nrdr and A = nR2(t) at a given instant. 
Equation (4) simply states that the energy conducted 
from the liquid to the bubble through the microlayer 
is used to vaporize the surrounding liquid and thus 
expand the bubble. The initial condition for R(t) will 
be discussed later. 

2.1.2. On the microlayer. The microlayer is assumed 
to be a wedge ceritered at r = 0 with local thickness 
L(r). Because the hydrodynamics are not considered, 
the microlayer wedge angle ~b cannot be determined 
as part of the solution. In Cooper and Lloyd [31], the 
angle qb was related to the viscous diffusion length of 
the liquid as Rb(t)tan ~b = clx/(v:) in which vl is the 
kinematic viscosity of the liquid. Hence for small ~b, 
one has 

c,x/(v,t) c,~/(vlt) 
~= R~(t )  = c R ( t )  " (5) 

Cooper and Lloyd [31] estimated cl to be within 0.3- 
1.0 for the conditions under their consideration. It is 
postulated here that the behavior of ~b is insensitive to 
whether or not the wall temperature is constant. Thus 
the above form of equation (5) for ~b is adopted. 
The constant c~ will be determined from matching the 
predicted growth rate R(t) with the experimentally 
measured growth rate. The two dimensionless 
constants, c and Cl, constitute the only empiricism of 
the present analysis. They arise because the hydro- 
dynamics around the bubble are not taken into 
account in the analysis which follows. 

For both the microlayer and the solid, the tem- 
perature fields are assumed to be axisymmetric. The 
energy balance for the liquid within the microlayer is 

OTt [ !O/OTI 'X  02Tlq 
O---f =~l ~rtr-~-r )+--~z2 j 

for0~<r~<Rb(t) O<~z<<.L(r) (6) 

where ~t~ is the liquid thermal diffusivity. The boundary 
conditions are given as follows : 

/'1 = Tat atz = L(r) (7) 

0r, 
T~ = Ts and kl = k, ~-z at z = 0 (8) 

arl 
- - = 0  a t r = 0  (9) 
Or 

aT, 
- 0 a t r - -  Rb(t). (10) 

Or 

In the above, r~ is the solid temperature. Equations 
(8) simply ensure the continuity of the temperature 
and heat flux on the liquid-solid interface. Equation 
(10) is only an approximation in which radial heat 
conduction at the edge of the microlayer is neglected. 
Equation (9) guarantees that r~ is finite as r ---, 0. The 
initial condition for T~ is discussed later. 

2.1.3. On the solid heater. The energy equation for 
the solid is 

Or, = ~, [ 1 L :  arA a~r,1 
at Lr ortr-~-r )+--~z2 J +~q .... 

for0 ~< r < oo - H < z < 0  (11) 

where ~s and k~ are the thermal diffusivity and con- 
ductivity of the solid, and q" is the volumetric heating 
and H is the thickness of the heater. The boundary 
conditions are 

aT, 
- - = 0  atr  = 0 a n d r ~  oo (12) 
Or 

aT, 
- - = - q " / k s  a t z = - H  (13) 
0z 

~T. ~ T .  
/'1 = T ~ a n d k l ~ z '  = k~--°az a t z  = 0 0 ~< r ~ Rb(t) 

(14) 

Tl=Tsand0YS.=0  a t z = 0  r>~Rb(t). (15) 
~ Z  

In the above, two possible mechanisms for heat supply 
are incorporated : a heat supply on the lower surface at 
z = - H, q", or a volumetric heat supply (on average) 
within the solid layer, q". For r > Rb(t) at z = 0, the 
heat transfer due to natural convection of the liquid 
is neglected. Whether or not the heat removal from 
the solid due to natural convection is included, it has 
virtually no influence on the solution because it is so 
small compared with latent heat removed due to bub- 
ble growth. The condition at r --, oo reflects the uni- 
formity of the temperature far away from the bubble. 
Because of the continuous energy supply, it is not 
quite correct to specify, for all times, T~ = T~a, + A T~,0 
as r ~ ~ in which AT, ato is the initial superheat at 
incipience. If there exists strong thermal interaction 
among adjacent nucleation sites, as might occur in the 
coalesced bubble regime, the present analysis needs to 
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be modified. Hence:, the present analysis is restricted, 
strictly speaking, to the isolated bubble regime. 

2.1.4. On the initial conditions. It must be noted 
that the above formulation requires a well-established 
microlayer at the beginning of the solution. This 
implies that the solution must start at some finite but 
small time to << td in which ta is the departure time of  
the bubble and is the time scale of interest for the 
present problem. It is assumed here that at t = to the 
microlayer has formed and the bubble has a radius 
Ro. But, since R0 is small, the bubble has withdrawn 
little energy from the solid at t = to. Thus, the solid 
temperature T~ is practically constant everywhere : 

T~ = T~t+AT=to at t  = to << td. (16) 

This assumption is justified because the initial stage 
of the growth is governed by hydrodynamic con- 
siderations as is the case for Rayleigh's solution. The 
present study focuses on the coupling of the solid 
temperature with that of the liquid and the rate of 
bubble growth. However, this coupling becomes 
important only after a significant amount of energy is 
transferred from the solid to the bubble through the 
microlayer. Therefore, a reasonable initial condition 
for T~ is 

Tl( t= to, r < ~ R o , z ) =  T~t+AT=to [ 1 -  L-~r)] 

at t  = to << td. (17) 

Consistent with equations (16) and (17), the initial 
bubble radius at t = to can be obtained by assuming a 
constant wall temperature. This is appropriate 
because the solid temperature is not affected yet by 
the growth of the bubble at very small to. Integrating 
equation (4) by as,;uming a time independent OTdaz, 
one obtains 

c 2 Ja 
R¢ (t) -- f (c)  c l Pr~/2 (0tl t) 1/2 (18) 

for the growth rate. with a constant wall temperature. 
In the above 

Ja = pz cpl A T~to (19) 
pvhrg 

and 

VI 
Pr~ = -- (20) 

are the Jacob number and Prandtl number, respec- 
tively, and % is the specific heat of the liquid. Hence 
R0 can be found as Ro -- P~(to). In equation (18), the 
relation between 4, and R (t) given by equation (5) has 
been used. Equations (16)-(18) complete the speci- 
fication of the initial conditions. Although the actual 
initial growth is governed by hydrodynamics, this 
assumed initial radius has little effect on the later 
growth as long as to << td. It is noted that the liquid 
Prandtl number Prt results from Cooper and Lloyd's 

model for the microlayer wedge angle 4, given by 
equation (5), and, using equation (18), 4, may be ex- 
pressed as 

f ( c)c~ Pr, 
4, - - -  ( 5 a )  

c3 j a  

2.2. Non-dimensionalization and coordinate trans- 
format ion 

2.2.1. Non-dimensionalization and further  simpli- 
fications. To gain an understanding of the important 
physics and to efficiently solve the energy equations, 
the following dimensionless variables are introduced : 

Z = t / t  d P = r/Rb(t) ~l = z /L(r)  ~ = z / H  

l~(z) = R(t)  O, = (7:'1 -- T~at)/A T=to 
R~(td) 

O~ = (T~ -- T=t)/AT=to (21) 

where td is the bubble departure time scale. An accu- 
rate determination of ta is not necessary because only 
the time scale is relevant. The length scale in the z- 
direction for the solid is the thickness of the heater. 
However, this is not the correct length scale if H is 
very large or the solid conductivity is very small. Thus 
another transformation is expected for Zs in carrying 
out the computation. The utilization of H is sufficient 
for the purpose of dimensional analysis. 

Upon substitution of equation (21) into equation 
(4), the normalized bubble growth rate is governed by 

d----~-- \0Zt],, =, d~. (22) 

For constant wall temperature, the right-hand-side 
(RHS) of equation (22) is unity and R(z )=  zl/2. 
Hence, any mechanism that causes [(001/0~l)[z,= I to 
decrease with time will yield a growth rate/~(z) < z ~/2. 

Substituting the above dimensionless variables into 
equations, one obtains for the the governing 

microlayer 

00, tal~b _00, ~t,t d 1 ~_ (FO0,~ 

or R~' or R~(~) r Or\ Or} 

OqtdL'(P) el 001 O~ltd 0201 
+ - -  - -  (23) 

Rb(~)L(~) P OZl L2(?) OZ 2 

for 0 ~< ? ~< 1, 0 ~< Zt ~< 1. In the above 

and 

dL d R b  
L ' ( r ) = d - - r = 4 , < < l  /~b= dt 

L(0 ~< L ( 1 )  = 4 , R b ( ~ )  << R b ( ~ ) .  

For very small 4,, the RHS of equation (23) reduces 
to 

• t d f 0 // 001~ 2 ~1 001 0201 "~ ¢Xltd 0201 
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and consequently equation (23) becomes, to the lead- 
ing order for small q~, 

d01 /~'(Z) _d01 1 1 d201 

dz l~(z) ' de c2pr, r2j~2(z) dZ 2 

fo r0~<r~< l  0 ~ < ~ 1  (24) 

where the prime denotes the time derivative wrt z. If 
c~Pr~ << 1, the conduction term dominates and a 
quasi-steady heat conduction problem results. Only 
for some cases, such as low Jacob number boiling, it 
is possible that c2prl << 1. Hence all three terms on 
equation (24) must be retained for numerical accu- 
racy. 

It is noted that since the second order derivative wrt 
e disappears following the foregoing scaling analysis, 
only one boundary condition in the e-direction is 
required. Because ~'(z) > 0, the first order derivative 
wrt f acts as a convection term with a negative speed 
in the P-direction. Thus the condition at e = 0 given 
by equation (9) is dropped. The advantage of solving 
equation (24) over equation (23) is that equation (24) 
is parabolic, instead of elliptic, and marching from 
F = 1 to e = 0 for equation (24) is relatively simple. 

For the solid layer, the energy equation in dimen- 
sionless form is 

d0s ~'(~) _d0~ 
,O'r ~(~) t de 

cqtd 1 d {rdO~'~ 

R~(~) ~ d~ L--if/ 

O t t  " cqtd d20~ . ~ aq 
(25) 

for0 ~< r < 0% - 1 ~< gs ~ 0. For  the first term on the 
RHS of equation (25), the ratio (Rb(z)/H) 2 is small at 
the early stage of growth but can be large at a later 
time if a thin heater is used. Thus unlike the liquid 
microlayer case, both the derivatives wrt e and gs are 
important in equation (25). Using equations (1), (18) 
and (21), equation (25) can be expressed as 

dos /~'(z) _d0s l f2(c)c~Pr~ 1 l ~__(edOs ~ 
dz ]~(z) r dg -- o~ c 6 j a  2 1~ 2 (z) e de \ d g /  

where 

d20s ctstaq" (26) 
+ F°~z2~ + ksAT~at0 

Gt s t d 
Fo = (27) 

H 2 

is the solid Fourier number. The last term in equation 
(26) is usually insignificant during the early stages of 
growth. In all the data analyzed, when neglected, the 
last term causes at most 10% error for/~(z). Although 
this term is kept in the computation to obtain better 
values for c~, no particular attention will be given to 
its effect on the growth rate. 

It is emphasized here that the introduction of the 
bubble departure time scale, td, in the computation of 
the growth rate is an artifact. The growth rate R(t)  in 

dimensional form is independent of ta. However, I d is 
a useful quantity to characterize the effective thickness 
of the heater in defining Fo and to scale the growth 
time. If  to is quite small so that Fo << 1, the heater is 
considered to be very thick and the temperature at the 
bottom of the heater is not affected by the time the 
bubble departs. If  Fo ~ O(1) or larger, the tem- 
perature on the bottom of the heater will be influenced 
by the bubble growth on a time scale of td. The thermal 
interaction between the bubble and the heater, which 
determines the bubble growth rate, thus depends 
strongly on Fo. From another perspective, the actual 
physical process does depend on td because after 
departure the solid temperature field will rise again. 
An estimate for td can be obtained, for example, from 
the balance of the buoyancy force with the growth 
force as discussed in ref. [22]. In estimating td and 
calculating the growth force, the bubble growth rate, 
which is the solution to be sought here, is needed. This 
dilemma can be easily solved since we do not need the 
exact value of td in equations (24) and (26), and the 
growth rate can be estimated by using the constant 
wall temperature solution for R (t) given by equation 
(18). Hence the estimate used here for td is 

ta ~ C2 Ja 2 (28) 
) c~Pr?/2 

which gives 

~s~/3 Ja 2/3 c4/3 

Fo - g2/3H ~ c2/3pr~/~ f,/3(c~ ) . (29) 

It is noted that the above choice for td is adopted. 
Non-dimensionalization of the boundary condition 

on the liquid-solid interface, equation (14b), results 
in 

001 ks L(e) dos 
d z ~ - k j  H d~s" 

Using 

R(t)  _ 
L (O = dpr, r = cR( t )r  = Rc(ta)C R---~d ) r, 

equation (5a) for ~b, and equation (18) for Re(t), the 
above can be expressed as 

d01 0~ I/2 
clPr~/2 l~(z)r3d-~ at2s = 0 (30) Fol/2 

dZ 1 g 

where the liquid-to-solid conductivity ratio and ther- 
mal diffusivity ratio, 

x = kl/ks (31) 

and 

= ~, /~s ( 3 2 )  

are two more independent dimensionless parameters 
that are important to the bubble growth process in 
addition to Ja, Pr~ and Fo. It is noted that x only 
appears in the boundary condition given by equation 
(30) while ~ appears in both the boundary condition 
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and the energy equation for the solid. Hence, the effect 
of ct on the growth rate and the solid thermal field is 
more complicated than that of x. 

2.2.2. Coordinate transformations. To apply the 
boundary condition at large J' for the solid tempera- 
ture, the following simple transformations are applied 
in the y-direction : 

Y = e~ {1-Sr  tan -I  [ ( l - q )  tan (1/&)]} 

for 0 ~< t/~< 1 (33) 

where ~o~ is the radial position at which equation (12b) 
is applied and the constant Sr determines the per- 
centage of the grid number allocated to the region of 
J' ~< 1. Typically, % = 0.7--0.8 is used and ~o~ ranges 
from 5 to 25. To place more grids near ~, = 0 where a 
large temperature gradient occurs, the following 
transformation is applied : 

& = - l + & t a n - ~ [ ( 1 - ~ ) t a n ( 1 / & ) ]  f o r 0 ~ < ~ < l  

(34) 

where S~ is a constant characterizing the stretching. 
The clustering of the grids occurs near ~ = 0. For a 
thicker plate, S~ == 0.65 is typically used. For a thin 
solid layer, a larger value of S~ = 1.0 is preferred 
because the thermal layer will quickly penetrate to the 
bottom soon after incipience. 

The computation must start from some very small 
but nonzero initial time, %, with the present formu- 
lation. Because the error for K(z) associated with z0 is 
of 0((%)l/z), it is desirable to use z0 as small as possible. 
To this end, the following transformation is intro- 
duced : 

= a 2 (35) 

with a uniform "time step" Aa. 
The energy equation for the solid heater is trans- 

formed to (r/, ~) coordinates. The equation is 

1 00~ 1~'(~) yO0~ Otl 

1 f2(c)c2pr, 1 1 0 l" 30~ &l~&l 

O (O0,O¢" I 0{ cqtdq'" (36) 
+ F o ~  \O-~J~ + ksAr, at'-----~" 

It is solved using the ADI method [32] while that for 
the microlayer is solved by marching from r = 1 to 
y - -0 .  

2.2.3. Solution procedure. Due to the coupling 
between the solid and liquid temperature fields 
through the boundary conditions, 0~ and 0~ must be 
solved simultaneously at a given instant. However, 0~ 
needs to be solved only for ~' ~< 1 while 0, should be 
solved for e ~< y~, with Yoo >> 1. Hence, an iterative 
solution procedure is adopted which is briefly 
described. 

The solutions for 0, and 0~ are assumed to be known 
at a = a ~ as 0~" and O[ 1. At a = a "+~ = an+Aa, the first 

iteration for 0~ +~ is solved using the ADI scheme by 
simply marching in time by one time step for the given 
boundary condition 0~(& =0) .  The liquid tem- 
perature 0~ is solved next with 0n(z, = 0). After one 
sweep, the interface temperature 0~+~(Z, = 0 )  is 
updated by forcing the continuity of the heat flux, 

00t ks O0, 
OZ - k j  Oz" 

The second iteration for O~ +~ begins with this updated 
condition at & = O. Several iterations bring the suc- 
cessive difference in temperature on the interface down 
to 10 .3 (this tolerance is sufficient for the present 
computation). After the temperature fields converge 
at o -n+l (or z n+l) the growth rate R(z TM) is updated 
by integrating equation (22) using Euler's explicit 
scheme. The information for /~(r "+~) is a necessary 
input in equations (24) and (26). Although the solu- 
tion for R(z n+l) is only first order accurate in Aa, the 
O (Aa) accuracy is not a concern here because a very 
small Aa has to be used to retain the numerical stab- 
ility in solving the coupled equations (22), (24) and 
(26). Typically, n = 104 is needed for z ~< 1 to achieve 
the convergence of the solution with a moderate and 
large Ja if 16-26 grids are allocated in 0 ~< r ~< 1. For 
Ja ~ 1, the total number of time steps is on the order 
ofn  = 8 x 104 for Fo = 10, 100 and 1000. 

3. RESULTS AND DISCUSSIONS 

3.1. Determination of the empirical constants c and Cl 
After examining a limited number of photographs 

for growing vapor bubbles in saturated pool boiling 
[12, 14, 28] the following trend is observed : 

(a) For high Jacob number, the bubble shape tends 
to resemble a hemisphere on top of a wedge (micro- 
layer). Thus c is close to 1. 

(b) For low Jacob number, the bubble shape is 
more spherical and c is thus small. 

The values of c are determined from the vapor bubble 
profiles and the photographs provided by Van Stralen 
and Cole [12], Akiyama etal. [14] and Hospeti and 
Mesler [28]. The following correlation for c best fits 
those data : 

c = [(0.4134Ja°165s)-6 +(1-0.1e-°°°°sJa)-6]  -U6. 

(37) 

Figure 2 compares the above fit with the data. It is 
possible that c may also depend on other parameters 
such as Pr~ and Fo. For the purpose of developing a 
model for predicting the bubble growth rate, a simple 
form for c is adopted and c~ is allowed to vary with 
Ja, Pr~ and cc As will be demonstrated, this approach 
turns out to be quite useful. 

The determination of cl, which describes the micro- 
layer wedge angle as shown by equation (5), is crucial 
to the success of the present study. Because the hydro- 
dynamics are not considered in this analysis, c, must 
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Fig. 2. Dependence ofc on Ja based on the data of refs. [12], 
[14] and [27]. 

1 32  

rd = ~.~I---- ]C,n--C~I/C~., 

in which c* is the value determined from matching the 
experimental growth rate data with the present com- 
putation. The above expression gives rd = 0.232. A 
very similar expression is obtained with a standard 
deviation of  0.19 for the exponent of  Pr~ using a least 
squares fitting. Hence, within statistical error, the 
exponent for Pr~ may be taken as - 0.5. Requiring the 
least relative deviation again, 

clPrl  l/z ~ 0 .00525Ja°752K:-° l13~  -0"117 (38) 

be determined empirically. Fo r  each experimentally 
measured R( t ) ,  a series of  values for c~ are used in the 
numerical computat ion for 0s, 0~ and R( t ) .  The one 
that results in the closest agreement between the 
measured and computed R( t )  over a large range o f  t 
prior to departure is taken to be the value of  c~ 
required in the present analysis. The results of  such 
are given in Table 1. The data are presented from 
large Ja to small Ja. Based on these 32 data sets, the 
following correlation for c, is obtained : 

C 1 ~ O.O0643JaO.763prlO.39oKo.o746tx -°.221 

by requiring the least relative deviation 

with a relative deviation of  0.238. Figure 3 compares 
the above correlation for c, with the data presented 
in Table 1; reasonable agreement is observed. An 
important  implication immediately follows when one 
substitutes equation (38) into equations (5a), (18), 
(24) and (26)-(30) which are the only places where 
Pr, appears. Since cl and Pr~ appear in the form of 
c~Pr~/2, it is obvious that Pr~ is no longer relevant to 
the present problem. This implies that the liquid vis- 
cosity is not  important  in determining the bubble 
shapes which are characterized by c and c~ in the 
present analysis. 

To understand the independence of  vapor  bubble 
shape on the liquid viscosity, it is instructive to esti- 

Table 1. Microlayer angle parameter c~ determined from various sources 

No. Ja Prj Ki/Ks ctl/~ts cl P (atm) Source 

1 1973.6 4.65 0.00156 0.00126 3.10 0.040 Van Stralen et al. [12] 
2 887.3 4.22 0 . 0 0 1 6 1  0.00130 1.75 0.079 Van Stralen et al. [12] 
3 766.2 4.54 0.0270 0.01210 1.30 0.066 Cole and Shulman [11] 
4 389.5 3.46 0.00164 0.00133 1.20 0.132 Van Stralen et aL [12] 
5 289.3 3.42 0.02840 0.01260 0.65 0.129 Cole and Shulman [11] 
6 210.0 6.44 0.00577 0.00810 0.33 0.063 Cole and Shulman [11] 
7 201.0 2.97 0.00166 0.00136 0.47 0.203 Van Stralen et al. [12] 
8 178.7 2.76 0.0290 0.01290 0.55 0.257 Cole and Shulman [11] 
9 156.0 6.70 0.00449 0.00604 0.30 0.182 Cole and Shulman [11] 

10 150.5 2.70 0.00168 0.00137 0.45 0.267 Van Stralen et al. [12] 
11 130.0 6 . 1 3  0.00870 0.00830 0.25 0.268 Cole and Shulman [11] 
12 90.6 2.17 0.02970 0.01331 0.20 0.474 Cole and Shulman [11] 
13 67.1 5.60 0.00860 0.00815 0.17 0.40 Cole and Shulman [11] 
14 50.6 4.74 0.00508 0.00629 0.30 0.689 Cole and Shulman [11] 
15 50.0 5.14 0 . 0 0 8 4 8  0.00808 0.16 0.522 Cole and Shulman [11] 
16 42.3 1 .76  0.00173 0.00144 0.52 1.0 Staniszewski [13] 
17 37.6 4.60 0.00837 0.00806 0.15 0.711 Cole and Shulman [11] 
18 35.8 1 .76  0.00173 0.00144 0.38 1.0 Staniszewski [13] 
19 25.3 1 .76  0.00173 0.00144 0.25 1.0 Staniszewski [13] 
20 25.0 1 .76  0 . 0 0 1 7 3  0.00144 0.30 1.0 Staniszewski [13] 
21 24.5 4.25 0.00493 0.00597 0.10 1.0 Cole and Shulman [11] 
22 23.4 1 .76  0.00730 0.00577 0.12 1.0 Hospeti and Mesler [27] 
23 23.0 4.30 0.00048 0.00086 0.18 1.0 Staniszewski [13] 
24 18.8 1 .76  0.00730 0.00577 0.10 1.0 Hospeti and Mesler [27] 
25 18.4 1 .76  0.00173 0.00144 0.28 1.0 Keshock and Siegel [15] 
26 14.9 1 .76  0.00730 0.00577 0.07 1.0 Hospeti and Mesler [27] 
27 11.5 1 .43  0.02630 0.02440 0.06 2.0 Akiyama et al. [14] 
28 11.2 1 .44  0.00174 0.00146 0.20 1 .90  Staniszewski [13] 
29 9.16 1 .30  0.00175 0.00148 0.16 2.72 Staniszewski [13] 
30 7.73 4.0 0.00046 0.00068 0.050 1 .90  Staniszewski [13] 
31 1.17 1 .02  0.02620 0.02470 0.015 8.0 Akiyama et al. [14] 
32 0.52 0.92 0.02560 0.02430 0.007 1 5 . 0  Akiyama et al. [14] 
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Fig. 3. Comparison fi)r ct based on the correlation and data. 

mate the Reynolds number of the liquid motion 
associated with the bubble growth. Using d = 2R(t) 
as the length scale,/~(t) as the velocity scale, assuming 
R(t) ~ fit J/2, the Reynolds number of the liquid flow 
may be estimated as Red ~ fl2/vt. For case No. 3 
(Ja = 766.2) listed in Table 1, using the measured 
growth rate shown in Fig. 4(b), it is easily shown that 
Red~12,  941 for f l2~8.8 (mm 2 ms - l  ) and 
vj = 6.8 x 10 -3 (crn 2 s - ' ) .  Hence, the liquid motion 
induced by the expanding bubble in this case is clearly 
of inviscid nature. Even for case No. 28 (Ja = 11.2) 
for which /32 ~0.064 (mm 2 ms-l) ,  one obtains 
Red ~ 256 by taking Vl = 5× 10 -3 (cm 2 s-I).  Typi- 
cally, Red ~ 40 may be the lower limit above which a 
uniform liquid flow around a bubble can be treated 
as inviscid flow. For  the present case, the bulk liquid 
motion is mainly i:a the radial direction. Because the 
viscous effect associated with the radial motion is 
weaker than that in a uniform flow over a sphere, 
the liquid flow induced by the growing bubble in the 
present study is mainly of inviscid nature. Therefore 
the hydrodynamics, which is important to the bubble 
shape appears to have a universal effect on the bubble 
growth rate, i.e. independent of the liquid viscosity, 
for most of the data listed in Table 1. The foregoing 
discussion also, to certain extent, justifies the choice 
of using Ja alone to correlate c as given by equation 
(37). 

3.2. Comparison of  the predicted and measured growth 
rate 

To validate the present numerical analysis and also 
to examine the effect of the Jacob number, Ja, on 
the growth rate, comparisons are made between the 
present prediction and the experimentally measured 
R(t) over a large range of Ja. Figure 4(a) shows such 
a comparison in the high Jacob number range, 
Ja = 201-1973.6 at x = 0.00156-0.0016: The data are 
taken from Van Stralen et al. [12] who used water as 
the boiling liquid. The Prandtl number, Prj. in Fig. 
4(a) changes from 2.97 to 4.65 ; but it is not expected 
that Pr~ will affect the growth rate. Excellent agree- 
ment is observed between the prediction and the 
measurement in this large Ja range. Figure 4(b) com- 
pares the numerical results with the data of Cole and 
Shulman [11] in which Ja ranges from 90.6 to 766.2, 

x=0.027-0.0297 and Pr]=2.17-4.54.  For  these 
intermediate to high values of Ja, excellent agreement 
for R(t) is again observed. Figure 4(c) compares the 
prediction with the data obtained by Cole and Shul- 
man [11] using methanol as the boiling liquid which 
has a higher Prandtl number, Pr~ = 4.6-6.13. The 
Jacob number ranges from 37.6 to 130.0 which is 
considered to be in the intermediate range. Very good 
agreement is seen between the data and the prediction. 
While the measurements shown in Figs. 4(a)-(c) were 
obtained under subatmospheric or atmospheric con- 
ditions, Fig. 4(d) compares the present prediction with 
the data of Staniszewski [13] obtained at Psat = 193 
and 276 kpa (or 28 and 40 psi), respectively, with 
Ja = 11.2 and 9.16. Even at this elevated pressure with 
relatively low Jacob number, good agreement can still 
be observed for most of the time. From Figs. 4(a)-  
(d), it is very obvious that R(t) strongly depends on 
Ja; an increasing Ja results in an increasing growth 
rate---a well-established fact. 

It is also noted that, at 276 kpa pressure, the present 
model over-predicts R(t) at the later stage of growth. 
The data (No. 31 and No. 32 in Table 1) by Akiyama 
et al. [14] were obtained at even higher pressure. For  
those two cases the Reynolds number is of O(1), 
especially at the later stage of growth. Hence, detailed 
hydrodynamics may need to be properly accounted 
for in order to improve the prediction. Another source 
of the error for R(t) at low Jacob number may be 
associated with equation (4) in which the energy trans- 
fer at the vapor dome between the bubble and the 
bulk liquid is neglected based on the assumption that 
the bulk liquid is at saturated conditions. This would 
only cause a small error if R(t) is much larger than 
the thermal layer thickness, 6,h, of the bulk liquid for 
most o f  the growth period. At low Ja, the bubble is 
typically small and, hence, the bubble growth may 
occur largely within the thermal layer. Under such 
conditions, the unsteady heat transfer between the 
vapor dome and the bulk liquid is no longer negligible. 
From this view point, the present analysis may not be 
directly applied to very low Jacob number boiling 
systems without further study. 

4. CONCLUSIONS 

In Part I of the present study, a numerical analysis 
is formulated to study the growth of vapor bubbles in 
saturated heterogeneous boiling. The thermal inter- 
action of the temperature fields in the thin liquid 
microlayer and in the solid heater must be properly 
accounted for in order to accurately predict the 
growth rate of vapor bubbles attached to a heating 
surface. The vapor bubble shape parameter, c, and 
the microlayer wedge angle parameter, cl, are two 
empirically determined constants which are used in 
the numerical computation. In particular, the wedge 
angle parameter, cj, is obtained by matching the 
measured and predicted bubble growth rate. It is 
important to note that once cj is correctly specified in 
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Fig. 4. Comparison of the bubble growth rate R(t) between the present numerical prediction and various 
data: (a) comparison with the data of Van Stralen et al. [12] using water as boiling liquid ; (b) comparison 
with the data of Cole and Shulman [11] using water as boiling liquid ; (c) comparison with the data of Cole 
and Shulman [11] using methanol as boiling liquid and (d) comparison with the data of Staniszewski [13] 

using water as boiling liquid at elevated pressure. 

the computation, the predicted bubble growth rate 
compares very well with the reported experimental 
data over a wide range of conditions during the entire 
growth period. The empirically determined cor- 
relation for c~ suggests that the liquid Prandtl number, 
and hence the viscosity of the liquid, plays little role 
in the bubble growth process. A subsequent estimate 
indicates that the Reynolds number of the bulk liquid 
motion induced by the bubble is of inviscid nature ; 
thus the viscosity is not important in determining the 
parameters c and c,. 

The dimensional analysis for the governing equa- 
tions and boundary conditions shows that there exist 
four relevant dimensionless parameters for bubble 

growth: Jacob number da, Fourier number Fo of the 
solid based on the thickness of the heater and the 
bubble departure time scale, the liquid-to-solid con- 
ductivity ratio ~c, and the liquid-to-solid thermal 
diffusivity ratio ~. The Jacob number is the most 
important one affecting c, c~, and dimensionless 
growth rate/~(x). The effects of the four parameters 
on/~(z) and the thermal fields of the liquid and the 
solid heater will be discussed in Part 1I of the present 
study [29]. 
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